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LETTER TO THE EDITOR 

Remarks on the local time rescaling in path integration 
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Erlangen, Federal Republic of Germany 

Received 11 June 1990 

Abstract. The local time transformation used in path integration is shown to be equivalent 
to standard procedures applied to Schrodinger’s equation. 

Since Duru and Kleinert [ l ]  introduced the idea of local time rescaling in path 
integration this method has been applied very successfully in recent years. By repara- 
metrizing the paths with a new, in general, path dependent time many problems have 
become solvable by path integration. However, there exists no rigorous proof for the 
validity of this procedure. The local time rescaling technique should be understood as 
a recipe. For a detailed discussion we refer to the work of Inomata [2-41. 

In this letter we want to show that the recipe mentioned above is equivalent to 
standard techniques for the solution of Schrodinger’s equation. First we present the 
general treatment which transforms the stationary Schrodinger equation for a given 
potential V ( x )  into one for a potential ? ( z )  with fixed energy = CO, whose solutions 
cp,(z) and E,, are assumed to be known. The energy eigenfunctions @ , , ( x )  and energy 
eigenvalues E, of the original problem are then expressed in terms of Q,( z )  and E,,. 
Secondly, we present the time transformation technique of path integration and show 
its similarity to the methods used for Schrodinger’s equation. 

Let us consider the stationary Schrodinger equation for a one-dimensional particle 
with mass M in the potential V ( x )  

d2 2 M  

If the solution of (1) is not known by standard techniques like factorization, algebraiz- 
ation or direct identification with hypergeometric or confluent hypergeometric function 
one usually tries to transform (1) into another Schrodinger equation whose solution 
is know by one of the above methods [ 5 , 6 ] .  Hence, the general ansatz we can start 
with is 

x =f ( z )  @ ( X )  = g ( Z ) Q ( z )  (2) 
which should satisfy a differential equation similar to (1) 

d2 2 M -  (2-7 V ( z )  (3) 

We assume that the solution of this problem is known and given by Q , ( z )  and E,. For 
simplicity we assume a discrete spectrum only. Using standard calculus one obtains 

2 f ‘g’ - g f “  
f I 2  Q’+ (5-5) Q ]  (4) 
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wheref’=f’(z) = df(z)/dz and similar for g ( z )  and ~ ( z ) .  Obviously the vanishing of 
the term linear in cp’( z )  implies the condition 2f’( z)g’( 2 )  = g ( z ) f ” ( z )  which leads to 

g (  2 )  = c m .  ( 5 )  

In the above c is a constant of integration. Inserting this result in ( 1 )  and comparing 
it with (3) gives 

(6) 
R 2  f ” ’ ( z )  3 f ” ( Z )  

4M f’(z) 2 f ’ ( Z )  
F ( Z )  = f ’ 2 ( 2 ) [  V ( f ( z ) )  - E ] - -  (--- ( -)2) + Fo 

E ( E )  = Fo. (7) 

Here Po is an arbitrary constant and may be chosen to zero without loss of generality. 
Hence, the solution of the original problem ( 1 )  may be expressed in terms of the 
solution of (3) 

@,(XI = c , m  cpn(z) (8) 

{ E , } = { E I E , ( E ) =  CO}. (9) 
The constants c, may be obtained by normalization and z =f - ’ (x ) .  It is interesting to 
note that the additional potential appearing in (6) due to the kinetic term (4) is 
proportional to the Schwarz derivative o f f (  z )  

Now we will show that the local time rescaling in path integration is equivalent to 
the above procedure for Schrodinger’s equation. The aim of time transformation is to 
change the path integral for a non-integrable problem into one whose path integral 
solution is known. These are the harmonic oscillator with additional inverse square 
potential [7], the Poschl-Teller and modified Poschl-Teller potential [8]. The starting 
point is the functional integral for the promotor [2-41 

where 

is Hamilton’s characteristic function and T =E:, T ~ ,  Axj = xj -xj-, , x”= xN and x’ = xo. 
The promotor itself has no physical interpretation. However, the energy dependent 
Green function is obtained by integration: 

1 f a  
G(x”, x’; E )  = J P ( x ” ,  x’; T )  dT. 

iA 

The nonlinear transformation x = f ( z ) ,  which is the same as in ( 2 ) ,  is accompanied 
by a local rescaling of the time intervals [2-41 

Tj = h ( Z j  ) h (Z j -  1 ) Oj (13) 
with the giobal scaling property 

N 
T =  h(Z”)h(Z’)O (T= 1 Oj. 

j = l  
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The requirement that the kinetic term ( A x ~ ) ~ / T ~  be changed into a kinetic term in 

h(z) = f ‘ ( z ) .  (15) 

Note that in path integration (Azj)’ = 0(crj) and therefore terms up to O((Azj)*) have 
to be considered in the expansion of the kinetic term in (1 1). A detailed calculation gives 

z-space and cr-time, namely (Azj)’/crj, leads to the condition 

~ ( x ” ,  x’; 7) = [f’(z’)f‘(zf~)]-‘/’K(z~’, 2’;  a )  exp{(i/fi) Cou} (16) 

where 

is a path integral for the propagator of a particle evolving with time U in the potential 
P(z)  given in ( 6 ) .  The corresponding short time action reads 

- M  
Sj=-(Azj)’- C(zj).;.. 

2 uj 

With the help of (12) and (14) we express the Green function as 

I: (19) 
1 

G(x”, x’; E )  =- [ f ’ ( z ’ > f ’ ( ~ ” ) ] ~ ’ ~  
l h  

k ( z ” ,  z’; a )  e(i’fi)Qou du. 

After path integration the unphysical propagator (17) may be written as 

k(z’’, z ’ ;  a) =I exp{-(i/fi)Encr}cpn(Zf’)(PX(z’). 
n 

Again we have assumed a discrete spectrum only. 
Now the Green function can be calculated and yields 

G(x”, x’; E )  = [f’(z”f‘(z’’)]’/’ (Pn (”(z‘) 
n E n ( E ) -  C O  . 

A comparison with the standard form 

ip , ( x ” ) i p  f (x’) 
G(x”, x’; E )  = 

n E - E ,  

leads to the wavefunctions (8) with c, = [(aE(E)/dE)I.=.”]-”2 and the energy spec- 
trum is that given in (9). 

In this letter we have shown that the local time transformation technique is 
equivalent to standard procedures in solving the Schrodinger equation. The recipe for 
nonlinear space transformation accompanied by a rescaling of time slices in path 
integration gives the same result as substitution of dependent and independent variable 
in Schrodinger’s equation. 
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